
Multimedia Systems (2007) 13:51–68
DOI 10.1007/s00530-007-0077-x

REGULAR PAPER

Metadata-driven optimal transcoding in a multimedia proxy

Laszlo Böszörmenyi · Hermann Hellwagner ·
Peter Schojer

Published online: 8 March 2007
© Springer-Verlag 2007

Abstract An adaptive multimedia proxy is presented
which provides (1) caching, (2) filtering, and (3) media
gateway functionalities. The proxy can perform media
adaptation on its own, either relying on layered cod-
ing or using transcoding mainly in the decompressed
domain. A cost model is presented which incorporates
user requirements, terminal capabilities, and video vari-
ations in one formula. Based on this model, the proxy
acts as a general broker of different user requirements
and of different video variations. This is a first step
towards What You Need is What You Get (WYNIWYG)
video services, which deliver videos to users in exactly
the quality they need and are willing to pay for. The
MPEG-7 and MPEG-21 standards enable this in an
interoperable way. A detailed evaluation based on a
series of simulation runs is provided.

Keywords Video proxy · Video caching · Media
gateway · Media adaptation · Metadata · MPEG-7 ·
MPEG-21 · Cache replacement

1 Introduction

It is well-known that client-side proxies can give sub-
stantial support for video delivery over the Internet.
Traditionally, such proxies provide two basic function-
alities: they serve (1) as a firewall and (2) as a cache.

These basic functionalities can be considerably
extended if we take into consideration that video deliv-
ery is getting ever more challenging, partly due to the

L. Böszörmenyi (B) · H. Hellwagner · P. Schojer
Department of Information Technology,
Klagenfurt University, Klagenfurt, Austria
e-mail: laszlo@itec.uni-klu.ac.at

heterogeneity in user requirements, partly also due to
greatly diverse equipment, characterized by (1) differ-
ent connectivity (ranging from high speed LANs over
UMTS to slow connections over modem or GSM) and
(2) different computational power (ranging from work-
stations over PDAs to cell phones). In such a hetero-
geneous environment, the proxy can take over a much
more general role than usually, by serving different user
and terminal types by different video quality classes. It
can act as a kind of media broker that (1) understands
the preferences and capabilities of the user and (2) can
handle different variants of the same video. Based on
these inputs, it can perform an optimal match between
the needs of the user and the possibilities of the pro-
vider. It can further detect when a request cannot be
fulfilled at all due to irreconcilable quality mismatch,
and act in this case as a request filter that protects both
server and client from attempting to serve “hopeless”
requests (such as sending a video in HDTV quality to a
PDA).

The MPEG-7 standard provides tools to describe
different variants of a video and the emerging MPEG-
21 standard provides tools to describe user preferences
as well as terminal and network capabilities in an inter-
operable way. This enables us to build What You Need is
What You Get (WYNIWYG) video services. The users
do not get just the available quality nor the best possible
quality, but exactly the quality they need and are ready
to pay for.

This paper introduces a novel concept for such a proxy
with broker functionality. The proxy may cache videos
in different quality variants. If a video is getting popular
both in high and in low quality, then it caches both vari-
ants. Thus, it acts not only as a cache but also as a media
gateway.

52 L. Böszörmenyi et al.

Lower quality variants may be produced in a very
efficient way due to layered coding. In the MPEG stan-
dardization group, great efforts are in progress to define
an efficient layered video coding scheme. Currently,
however, layered coding (as defined in MPEG-4) is not
supported by virtually any codec. If the video is not
available in layered coding, then the proxy can perform
transcoding on its own. Transcoding may be a time con-
suming process, therefore the proxy has to consider its
costs.

We introduce a cost model that controls the decisions
of the proxy. To the best of our knowledge, this is the
first work on a quality aware video cache that combines
partial caching in the quality domain with a differenti-
ated model of user preferences, of video variations, and
of the caching costs. A nice feature of this approach is
that we get the gateway and a basic filtering functionality
dynamically as a “side effect” for free.

The presented concepts are implemented in QBIX-G
(Quality Based Intelligent proXy Gateway), relying on
previous work of the authors [12]. In this article, we
present the architecture of the whole system, the under-
lying cost and quality model and a set of results based
on a combination of the running implementation and
simulation.

2 Basic notions

2.1 Client-side proxy cache

A proxy cache is a computer residing between client
and server and caching data which the client is request-
ing from the server. A client-side proxy (in the following,
simply proxy) has normally a better (faster) connection
to its clients than to its servers, which are not aware of its
existence. A client sends its request to the proxy, which
tries to fulfill the request from its local cache, if possible.
If not, the proxy forwards the request to the server. It
stores a local copy of the data sent back by the server as
a reply to the client. Ideally, a client-side proxy reduces
load and network traffic on the server side and gives
clients a reduced startup delay.

2.2 Media gateway

A media gateway is similar to a proxy in inspecting the
data flows between server and client but it may also
modify them according to some transcoding rules (see
Fig. 1 for a typical scenario). The transcoding itself can
be hinted by metadata, such as user preferences or ter-
minal capabilities, or it can be hard coded. A media
gateway node transcodes videos to some specific quality

Business Users

Home Users

Proxy Gateway

Fig. 1 Media gateway scenario

characteristics, such as a given dimension, bitrate, color
etc. Note that transcoding converts a higher quality level
to a lower one, but not the other way round.

2.3 Media adaptation

In the context of video transmission, media adaptation
means the transformation of an already compressed
video stream. Media adaptation can be classified into
three major categories: (1) bitrate conversion or scaling
(including frame dropping, i.e., temporal conversion),
(2) resolution or spatial conversion, and (3)
syntax conversion. Bitrate scaling can adapt to short-
ages in available bandwidth. Resolution conversion can
adapt to bandwidth limitations, but it can also accommo-
date for known limitations in the user device in process-
ing power, memory, or display size. Syntax conversion is
used in hybrid networks to match server and client com-
pression protocols. In the current work we assume that
frame dropping can be done in the compressed domain,
for other kinds of transcoding we need to decompress
and re-encode a video, which is called adaptation in the
decompressed domain — a slow and resource-intensive
task. Efficient algorithms for general transcoding in the
compressed domain do exist, but are out of the scope of
this paper.

2.3.1 Adaptation and cache replacement

Cache replacement strategies in the area of video cach-
ing are divided into two categories: full and partial
caching.

With full caching, videos are handled like normal Web
objects, with the disadvantage that videos are huge and
only a small number of videos can be cached at one
node; thus, hit rate is low. With partial caching, only a
selected part of a video is cached, e.g., only a prefix [13],
or bursty parts of a video [16], hotspot segments [3], etc.

Metadata-driven optimal transcoding in a multimedia proxy 53

In this paper we concentrate on partial caching in
the quality domain. Related work in this area mostly
relies on layered coded videos, which reduces adapta-
tion to the simple case of deleting the highest avail-
able enhancement layer. Examples are periodic caching
of layered coded videos [4], combination of replace-
ment strategies and layered coded videos [6], quality
adjusted caching of GoPs (groups of pictures) [10],
adaptive caching of layered coded videos in combina-
tion with congestion control [8] or simple replacement
strategies (patterns) for videos consisting of different
quality steps [7]. Most of these proposals rely on sim-
ulation to evaluate the performance of the caching
techniques.

None of these proposals considers user preferences
or reload behavior due to quality mismatches.

2.3.2 Adaptation and codecs

Most codecs do not support layered coding, although
this is a requirement for fast and efficient adaptation.
One of the first widely used standards with rudimen-
tary adaptation support was MPEG-2, which allowed
the definition of a single enhancement layer. This fea-
ture was pretty much ignored by content providers.

MPEG-4 is actually the first standard that offers
extensive adaptation options, i.e., temporal, spatial and
bitrate scalability through the means of layered coding.
Most implementations of the standard in software and
hardware do not (yet) support this feature, but restrict
themselves to the simple profile part of MPEG-4, which
does not even support B-frames.

2.3.3 Adaptation and media gateways

Using adaptation in media gateways on content that
does not support layered coding creates several prob-
lems. The first problem is the high burden on the CPU
created by resource intensive decoding and encoding
operations. For example a 2.0 GHz Pentium IV proces-
sor is capable of performing bitrate transcoding on only
six CIF (352 × 288) streams in parallel [11].

Another problem is the reduced hit rate in the cache.
It is a common assumption that request patterns fol-
low the Zipf distribution. The higher the Zipf α value,
the higher is the hit rate in the proxy.1 Without lay-
ered coding the proxy stores n variations of the same
video in the cache. Due to differing user preferences,
the requests now do not accumulate on a single object
but are distributed over n variants. This “scattering”

1 Higher α means more skewed popularity distribution.

disturbs the original Zipf distribution and has the effect
as if the α value was reduced. The number of one-timers
(videos that are requested only once) increases and
even a class of zero-timers is introduced. Zero-timers
are videos that are used only as transcoding sources
but are never explicitly requested by any client. As we
have to lock these videos when using them as transcod-
ing sources, they may remain in the cache for a fairly
long time.

Moreover, the size of these n variants is in total greater
than the size of the stream in layered coding format.
Thus, a media gateway can store more video objects
than a Web proxy but fewer different videos.

The advantage of the gateway functionality is that
reloading of a video due to quality mismatches happens
significantly less frequently and that customer satisfac-
tion should be considerably higher. Costumer satisfac-
tion is of course generally hard to measure — that is
the reason why we take user preferences and costs into
consideration.

2.4 User preferences

There are currently two major standards available for
communicating user preferences to a server. The first
one is CC/PP (Composite Capabilities/Preference Pro-
files) [9] which is a standardized framework developed
by the W3C as an extension to the HTTP 1.1 standard. It
is a collection of the capabilities and preferences asso-
ciated with a user and the configuration of hardware,
software, and applications used by the user to access the
World Wide Web. The disadvantage of this protocol is
that it fails to allow users to specify priorities for fea-
tures, e.g., to prefer higher video frame rate over larger
spatial resolution.

The other major standard is MPEG-21 [1], specifically
the Digital Item Adaptation (DIA) part. The advantage
of MPEG-21 DIA is that it was designed with content
adaptation in mind. The goal of MPEG-21 is to define
a normative open framework for multimedia delivery
and consumption, spanning the whole delivery and con-
sumption chain for a multitude of client devices differing
in processing power, display, and bandwidth. The avail-
ability of this information helps a proxy/server to decide
on optimal client-oriented adaptation. To define what a
proxy/server/client is allowed to do with a media stream,
e.g., playing, transcoding, etc., the Rights Expression
Language (REL [2]) part was created. The schema for
metadata describing adaptation and its usage is defined
in the DIA [14] part, which is essential for a transcoding
capable proxy gateway.
Digital Item Adaptation. In MPEG-21 a Digital Item
(DI) is defined as a container for all types of different

54 L. Böszörmenyi et al.

media assets. This can be a Web page, a complete video
or just one elementary stream from a video. To allow
clients to transparently access DIs without having to
worry about network and terminal installation or man-
agement, DIA was specified [14]. Using input provided
by DIA tools, a Digital Item is transformed into an
Adapted Digital Item.

The DIA tools consist of three major parts:

– Usage Environment Descriptions (UEDs)
These include user characteristics, terminal capa-
bilities, network characteristics, and natural envi-
ronment characteristics. They are used to provide
descriptive information about the usage environ-
ment of the users which in turn is used to adapt
Digital Items to meet the requirements of the user
for transmission, storage and consumption of these
DIs.

– Digital Item Resource Adaptation (DIRA)
A DI consists of resources, e.g. text, images, video
streams. For each of these resources a Bitstream Syn-
tax Description (BSD) exists. Using such a descrip-
tion, a Digital Item resource adaptation engine can
transform the bitstream and the corresponding
description using editing-style operations such as
data truncation and simple modifications.

– Digital Item Declaration Adaptation (DIDA)
The description of a DI is defined in an XML schema
file, the DI Description Language (DIDL). Whereas
BSD is used to adapt resources, DIDA defines tools
to adapt DIs based on DIDL.

User Characteristics. User Characteristics describe user
specific preferences like display preferences (e.g., pre-
ferred contrast, saturation, color profile) or audio pref-
erences (e.g., audible frequency range). A user can also
specify how important each of these parts is for him/her.
Terminal Capabilities. Terminal Capabilities are
used to describe the hardware and software that exists
on the client side. In terms of software, it is described
which encoding/decoding capabilities a client has, e.g.,
whether it can decode MPEG-4 elementary streams con-
taining B-frames.

3 QBIX-G

QBIX-G (Quality Based Intelligent proXy Gateway)
realizes the combined media gateway/cache functional-
ity. It supports standard-compliant RTSP communica-
tion, with extensions that allow clients to transmit their
user preferences to the proxy, and allows real-time trans-
coding of AVI and MPEG-1/-2/-4 videos to the MPEG-4

format. The implementation of QBIX-G is based on
the ViTooKi video toolkit, which was developed at our
department. A detailed description [11] and the entire
source code are freely available.2 Here we present only
the most essential parts.

3.1 Media caching and access scenarios

From the point of view of caching, the operation of
QBIX-G can be described as follows. The client sends an
RTSP DESCRIBE request containing the URL of the
requested video and the user preferences of the client.
The proxy checks in its cache whether it can find a ver-
sion that matches the user preferences. Four different
scenarios can now occur:

1. Object miss with quality miss: A full miss is given
when the proxy either finds a version with a quality
lower than acceptable (quality is acceptable if it is
in the range specified by the client, see Sect. 4.2) or
if it does not find any entry for the given URL. In
this case, the proxy has to forward the request to
the server. The server’s reply needs to be adapted
to the user preferences as specified by the client. (If
the server does not support transcoding at all, the
proxy has to remove the user preferences from the
DESCRIBE.)

2. Object miss with quality hit: This situation is similar
to the first one, except that the video coming from
the server matches the user requirements, either
because the server did the transcoding, or because
the original version happens to have the required
properties.

3. Object hit with quality miss: The proxy finds a cached
version of the video but the quality of the object is
higher than requested by, or acceptable for, the cli-
ent and therefore transcoding is needed.

4. Object hit with quality hit: The proxy finds a cached
version where quality is within the ranges specified
in the user preferences.

The proxy forwards the created/found version of the
video to the client when receiving the RTSP SETUP
and PLAY requests and tries to cache the original/
transcoded version, if possible and if not yet cached.

3.2 QBIX-G architecture

Figure 2 presents the basic modules of the ViTooKi
library. There are some common classes that are used

2 http://vitooki.sourceforge.net/

Metadata-driven optimal transcoding in a multimedia proxy 55

IO Module

Adaptation Module

Cache Module

Network Management Module C
o
m
m
o
n
M
o
d
u
l
e

Meta-data
Module

Information processing Information
 storing

Fig. 2 QBIX-G architecture

throughout the whole library in all other modules. The
IO Module is used for reading and writing data from/to
files or the network. The Adaptation Module is used
for data processing, i.e., media frame manipulation for
adaptation purposes (see Sect. 3.3). ViTooKi’s Network
Management Module consists of classes used for RTSP
message parsing and session management. The Metada-
ta Module realizes support for MPEG-7 and MPEG-21
information. The Cache Module realizes several adap-
tive cache replacement strategies and supports admis-
sion control.

3.3 Frame manipulation

One of the strengths of ViTooKi is its ability to eas-
ily manipulate single frames via Adaptor classes. An
adaptor expects as input a single frame and returns
a list of adapted frames, which can contain zero or
more frames. An adaptor is allowed to buffer frames,
until it has enough data available to perform one adap-
tation step. Currently, only visual media adaptors are
supported; system-level (e.g., scene) adaptation is not
yet implemented, nor is audio processing.

Adaptors are used to decode, encode and manipulate
frames. Gray-scaling, temporal frame rate reduction, or
bit rate reduction are just a few examples for frame
manipulation adaptors. In addition, adaptors are used
for logging and gathering of statistic information.

The AdaptorChain class, which itself is a subclass
of Adaptor, allows combining several adaptors into a
list of adaptors, which are executed sequentially.
Figure 3 shows an example. A compressed video frame
is fed into the AdaptorChain. The AdaptorChain

MP4Frame
DECOD

ER
ENCOD

ER

G
R
E
Y
S
C
A
L
I
N
G

S
P
A
T
I
A
L

T
E
M
P
O
R
A
L

Video Adaptor Chain

MP4Frame (compressed)

YUVFrame (uncompressed)

Adaptor (compressed domain)

Adaptor (uncompressed domain)

Fig. 3 Example of an AdaptorChain

forwards it to its first adaptor (in this case a Tempo-
ralAdaptor). The TemporalAdaptor acts as a B-frame
filter which deletes B-frames and only returns I- and
P-frames. The AdaptorChain forwards the returned
frame to the next adaptor, which returns a decoded
frame, which is then forwarded to the next adaptor, etc.
A single invocation of the Adapt method of an Adap-
torChain ends either when one of its adaptors returns
no frame, or when the last adaptor of the AdaptorChain
returns.

3.4 Metadata support

The metadata module of ViTooKi contains support for
parsing and creating terminal capabilities according to
MPEG-21 DIA and support for VariationSet descrip-
tions as specified in MPEG-7. The player software can
attach terminal capabilities to an RTSP request, thus
indicating an adaptation request. If enough resources
are available, the video stream will be transcoded in
real-time according to this information.

3.4.1 RTSP

ViTooKi supports its own RTSP library. The main reason
to write a new RTSP library from scratch was to allow
non-standard conforming extensions that were needed
for adaptation. Another reason was the lack of good
RTSP libraries when the project started.

We decided to use MPEG-21 DIA instead of CC/PP
because the scope of MPEG-21 DIA is much larger than
the scope of CC/PP, e.g., allowing for session mobility to
be integrated at a later point in time.

3.4.2 Extension to DESCRIBE

An extended DESCRIBE is used which includes an
MPEG-21 DIA document containing the user’s terminal

56 L. Böszörmenyi et al.

capabilities [15], as the following example shows:

DESCRIBE rtsp://192.168.0.2/coastguard.mp4 RTSP/1.0 CSeq: 1

Accept: application/sdp User-Agent: MPEG4ITEC Player

Content-Type: application/mpeg21_dia Content-Length: 458

<xml version="1.0" encoding="UTF-8"?>

<DIA xmlns="urn:mpeg:mpeg21:dia:schema:2003"

xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:mpeg:mpeg21:dia:schema:2003">

<Description xsi:type="UsageEnvironmentType">

<Terminal>

<InputOutput>

<Display bitsPerPixel="8" colorCapable="false">

<Resolution horizontal="240" vertical="320"/>

</Display>

<AudioOut numChannels="1"/>

</InputOutput>

<DeviceProperty>

<Storage size="64.0" writable="false"/>

<DeviceClass>PDA</DeviceClass>

</DeviceProperty>

</Terminal>

<Network>

<Capability maxCapacity="128000" minGuaranteed="32000"

inSequenceDelivery="false" errorDelivery="true"/>

</Network>

</Description>

</DIA>

If no terminal capabilities are specified, adaptation is
disabled for this client.

3.5 Stream processing

Elementary streams are processed via DataChannels.
The main function of a DataChannel is to read, trans-
form, and write data. Frames can be either read from the
network or from a local file, are then passed to an Adap-
tor object for optional transformation, and the result
is then written out to several DataSinks. A DataSink
can further transform the frames via its local adaptor
before writing it out to the network, a file, or displaying
it on the screen. This approach allows one to do global
adaptation in the DataChannel which affects all clients
and to do a fine-tuned, client-specific adaptation in the
DataSink class.

A sample DataChannel which consists of three cli-
ents is shown in Fig. 4. All clients require the video
to be transcoded in the spatial dimension. DataSink 1 is
decoding the frame and using some Display class to show
the video on the screen (a short-cut bypassing directly
connected encoder-decoder steps can be applied as a
local optimization). DataSink 2 requires further adapta-
tion and discards all B-frames of the video. The result-
ing stream is sent via RTP/UDP to the client. Client 3
does not need to change the adaptation result, the video
stream is directly forwarded to it via RTP/UDP.

MP4Frame (compressed)

YUVFrame (uncompressed)

Adaptor (compressed domain)

Adaptor (uncompressed domain)

MP4IO
DECO
DER

ENCO
DER

S
P
A
T
I
A
L

TEMP-
ORAL

ADAPTORCHAIN

DataSink 1

DataSink 2

DataSink 3

DECO
DER

Display

RTP

FOR-
WAR-
DER

RTP

IO objects

Fig. 4 Example of a DataChannel

3.6 Transcoding costs

Figure 5 shows CPU costs for all adaptors that can be
used in transcoding a video. Decoder and encoder were
tested on a Pentium IV running at 2 GHz with both the
XVID and the FFMPEG codecs.3 The test video used
was the video “Alien”, which is included in the “media”
directory of ViTooKi. The operating system used was
Linux (kernel 2.4) with gcc 3.2.

The percentage values presented in Fig. 5 are rela-
tive to the media stream duration (62 s) and specify how
much time was spent in the specific adaptor. For exam-
ple, a percentage value of 4% at the decoder means that
0.04 × 62 = 2.48 s of CPU time were spent for decoding
the complete stream. Tests were repeated 10 times, aver-
age values are presented here, absolute time variation
in the single test runs was small in the range of at most
70 ms. I/O usage was excluded from the benchmark.

One conclusion from Fig. 5 is that XVID is slower
than FFMPEG, especially at encoding, and therefore
only FFMPEG should be used for transcoding. In both
codecs, B-frame support was switched off in the encoder
(but was enabled in the decoder) and they were config-
ured to use the fastest, but also lowest quality mode.

Another — obvious — conclusion is that temporal
adaptation, which does not require decoding and encod-
ing, is the cheapest solution in terms of CPU usage. The
maximum number of temporal adaptors running in par-
allel is thus not limited by the CPU but by the speed
of the network and hard disk. Unfortunately, the typ-
ical size of B-frames in a stream accumulates only to
approximately 20% of the stream size, but discarding

3 We compared XVID version 2002-09-28 with FFMPEG version
0.4.8. See also http://ffmpeg.sourceforge.net/.

Metadata-driven optimal transcoding in a multimedia proxy 57

5,5337

4,0160

0

1

2

3

4

5

6

%

MP4 Decoders

Decoding Time in % of Stream Duration

XVID
FFMPEG

6,2530

16,8543
15,2825

3,239

8,3670 8,3065

0
2
4
6
8

10
12
14
16
18

%

MP4 Encoders

Encoding Time in % of Stream Duration

XVID QCIF
XVID CIF grey
XVID CIF
FFMPEG QCIF
FFMPEG CIF grey
FFMPEG CIF

7,1843

0,0570 0,0040 0,0037

0

1

2

3

4

5

6

7

8

%

Performance of Several Adaptors in % of Stream Duration

YUVSpatialReduction
YUVColorReduction
TemporalAdaptor
StrongTemporalAdaptor

(c)

(a) (b)

Visual Adaptors

Fig. 5 Performance of selected adaptors

the B-frames at least halves the frame rate. Also the
number of useful transcoding steps is limited to a sin-
gle adaptation step.4 Splitting this step up into several
smaller ones does not make sense because then the rela-
tion between the reduction of stream size and the I/O
overhead for the transcoding (bytes transferred from
and to disk) is even worse.

Reducing the bit rate of a single CIF stream (352×288
pixel) involves costs of approximately 12.3% CPU time,
allowing in theory up to eight transcoders to run in par-
allel in real-time. Practically, the number is lower (6),
because I/O and an increasing number of threads gen-
erate additional overhead.

Gray-scaling a single stream consists of a decoder,
a YUVColorReduction adaptor, and an encoder. Costs
are nearly identical to the bit rate reduction case.

Resizing a stream is the most expensive operation.
Changing the spatial dimension from CIF (352 × 288)
to QCIF (176×144) requires 14.5% of CPU time to
finish in real-time. As shown in Fig. 5, 7.1% were used
by the YUVSpatialReductionAdaptor alone. Note that
costs for a YUVSpatialReductionAdaptor increase lin-
early with the number of output pixels. In the worst
case, when the output dimension is close to CIF, i.e.,
actually merely copying a stream (including a small size
reduction), more than 28.2% CPU utilization were mea-
sured for the spatial reduction adaptor alone. Such a

4 We throw away all B-frames in one adaptation step. The next
step, removing P-frames, results in an unacceptably low frame
rate.

transcoding operation would require about
Cost(decoding)+Cost(spatial)+Cost(encoding) = 4.0+
28.2 + 8.3 = 40.5% CPU time.

Thus, depending on the requested transcoding oper-
ations, the number of parallel transcoding tasks varies
between 2 and 6. Such a low number of maximum par-
allel transcoding steps is one of the reasons why a cost
model must take these operations into consideration.

4 Calculating stream quality

When receiving a request, a proxy has to compare how
“well” cached videos match a request. To be able to per-
form this calculation, we must first define the features
characterizing elementary media streams.

4.1 Stream features

Let S be the set of elementary media streams requested
by all clients. Each stream s ∈ S is uniquely defined by
a set of variable features Fs and a set of constant fea-
tures Cs. Fs contains all features that a client is allowed
to specify via a request. The set of constant features
Cs contains features which are changeable neither by
the proxy nor by the client. Depending on the stream
type, different features are defined, as shown in
Table 1.

For visual streams, dimX identifies the spatial resolu-
tion of a stream in the x dimension, avgBitRate specifies
the average bit rate in bits per second, color can either

58 L. Böszörmenyi et al.

Table 1 Feature set definition
Stream type Fs Cs

Visual {dimX, avgBitRate, color, frameRate} {URL, aspectRatio, esID}
Audio {samplingRate, numOfChannels, avgBitRate} {URL, esID, language}
Other {avgBitRate} {URL, esID}

be true or false, and frameRate defines the rate in frames
per second. The URL uniquely assigns an elementary
stream to a video file, the aspectRatio is used to cal-
culate dimY, the elementary stream id esID is used to
uniquely identify a stream within a video file.

For audio streams, numOfChannels defines if a cli-
ent wants no sound (=0), mono sound (=1), stereo (=2)
or surround sound (>2). The feature samplingRate is
expressed in Hertz with meaningful discrete values in
the range [8000,48000]. Language is a string that defines
the language of the audio stream; for music-only streams
the language is set to none.

For all other streams, only avgBitRate, URL and esID
are defined.

4.2 Request definition

A single request r to an elementary stream s consists of
the URL, the elementary stream id and, for each sin-
gle feature fi ∈ Fs, an acceptance range [min, best, max]
and an associated importance value. The sum of impor-
tance values over all features fi must sum up to 1:

∑|Fs|
i=1

importancefi = 1.
The client also may specify request specific parame-

ters like the maximum delay (maxDelay) he/she is willing
to wait for the service (in milliseconds). For commercial
scenarios a client must also specify an upper limit of
money he/she is willing to pay for the video. maxDelay
and money define critical conditions, i.e., if they cannot
be fulfilled the proxy has to return an error. We further
define user preferences to include both the feature set
Fs and the request specific parameters maxDelay and
money. An example for a request looks like this:

– Fs ={dimX, avgBitRate, color, frameRate} =
{[176,240,352]/0.4, [64000,128000,256000]/0.5,
[0,1,1]/0.0, [15.0/15.0/25.0]/0.1}.

– Cs ={URL, aspectRatio, esID} =
{rtsp://www.server.at/test.mp4, 4

3 , 2} and
maxDelay = 2000 ms.

In this example, Fs’s notation is extended by the impor-
tance values, expressing, e.g., that the client does not
care about color (0.0), but that spatial resolution (0.4)
and bit rate (0.5) are of great importance.

4.3 Quality formula

Matching a request to the feature set of the requested
stream allows the proxy to calculate an abstract qual-
ity value that could be reached by forwarding a specific
version of the requested stream to the client. This value
tells, how “good” an answer to a given request is.

4.3.1 Feature quality function

Feature quality is calculated with the help of a utility
function which takes as input a triple: the acceptance
range and importance as specified by the client, and val,
the actual feature value of the requested stream.

Figure 6 shows an actual implementation of a utility
function used in QBIX-G. Intuitively, quality is highest
when val is closest to the value considered optimal by
the client (best). In this case the maximum quality value,
which is given by importance, is returned. The quality
value is zero if val is outside the [min, max] acceptance
range.

The border parameter, 0 < border < 1, defines the
percentage of the importance value that can be achieved
at the edge points min and max. This parameter is used
to distinguish between cases where the edge points of
the range [min, max] are inclusive or exclusive, respec-
tively.

For simplicity, we assume that quality degrades line-
arly from best to min and best to max. The lowest value

0

border*
importance

importance
best

min max

Quality

val0

Fig. 6 Quality function for a single feature

Metadata-driven optimal transcoding in a multimedia proxy 59

is reached at the edge points min and max with a value
of border ∗ importance, the peak value is at the position
best with the value importance.

4.3.2 Overall quality function

The overall quality of a stream s for a request r is
defined as:

Quality(r) =
∑|Fs|

i=1
FeatureQuality(vali, rangei, importancei)

or 0 if ∃j, 1 ≤ j ≤ |Fs| : FeatureQuality

(valj, rangej, importancej) = 0

The maximum possible quality value is 1, which means
that a perfect hit was found, a quality value of 0 is inter-
preted as “Do not send! Client will reject the stream.”

Note that the quality function does not state anything
about visual quality. It is only a metric on how close
the features of a specific stream are to the requested
features. By specifying such ranges, the client explicitly
states that he/she will not reject a video inside the range
due to a quality mismatch.5 If no feature ranges are
specified, it is assumed that the client requests the video
with the original quality.

5 Calculating stream costs

Being able to calculate the quality of an existing stream
variation allows a proxy to act as a request filter, i.e.,
it can detect in advance when stream rejection is likely
to occur. A typical use case is that of a mobile device
requesting a visual stream which in the cached ver-
sion exceeds its display size and its bandwidth. A non-
adaptive, but metadata aware proxy cache will simply
refuse to serve such a request to a client, yet an adaptive
proxy cache will try to fit the stream to the request by
means of adaptation. Due to the fact that adaptation can
be rather expensive, the proxy must be able to calculate
how much transcoding will cost.

For this purpose, a cost function was defined which
calculates a cost value over all affected resources. (We
do not consider explicitly the question of changing band-
width during a streaming session. The suggested model
does not exclude a renegotiation during a session, but
this feature is not implemented currently.)

5.1 Resource definition and costs

QBIX-G regards network, hard disk, and CPU as rele-
vant resources. Each resource is described by an upper

5 He/she might still reject the video for other reasons.

limit (namely limitnet, limithd, limitcpu), a current load
(loadnet, loadhd, loadcpu), and a price (pricenet, pricehd,
pricecpu). For the network the upper limit is expressed
in Mbit/s, for the hard disk in MByte/s, and for the CPU
the upper limit is defined as the number of video pix-
els the system can decode per second (as discussed in
Sect. 5.1.1). The resource load is expressed as a value in
the range [0,1], with 0 indicating that the resource is not
used at all and 1 expressing 100% resource usage.

5.1.1 CPU costs

While the calculation of the load for the resources hard
disk and network is rather simple, CPU load calcula-
tion is more complex. For this purpose, a multi-threaded
benchmark tool is used. The benchmark simulates sev-
eral sessions, each of them reading a video file from
the disk and decoding it. The videos are in MPEG-4
Visual format and CIF resolution, the decoding soft-
ware is based on the open source library ffmpeg. The
overall execution time is measured and the CPU decod-
ing capability is calculated. For a one-processor system
(Pentium 4 @ 2 GHz), a limitcpu value of 33.6 Mpixels/s
was measured. This interpolates to the system being able
to decode 33.6M pixel

352 ∗ 288 ≈ 331 CIF sized frames, or approx-
imately 11 video streams having a frame rate of 30 fps
each.
Transcoding costs. A transcoding operation A is
defined as a function that maps the feature set F of a
source stream src to an output stream target; the con-
stant features C do not change:

A : Fsrc → Ftarget; Ctarget = Csrc. (1)

We will define transcoding costs in relation to the costs
of decoding. Hence, for each single transcoding algo-
rithm, its costs relative to the decoding operation have
to be determined.

Table 2 gives an overview of the transcoding oper-
ation costs which were derived from the benchmark
results. The costs for decoding the src video depend
directly on the spatial resolution and the frame rate, i.e.
amount to pixelsrc/s = dimXsrc ∗dimYsrc ∗ frameRatesrc.

Table 2 Approximated CPU costs for transcoding operations

Operation Costs

Decoding pixelsrc/s
Encoding 2 ∗ pixeltarget/s
Spatial reduction 3.72 ∗ pixeltarget/s
Greyscaling 0.008 ∗ pixelsrc/s
B-frame dropping 0
B/P-frame dropping 0

60 L. Böszörmenyi et al.

Costs for all other operations depend on the same
features. Some operations depend on the features of the
src, some on the features of the target video. For exam-
ple, encoding is roughly twice as expensive as decod-
ing, a spatial reduction nearly four times as expensive
as decoding. The costs for temporal adaptation, i.e.
B- or B/P-frame dropping, are negligible and set to
zero.

Note that these values are only approximations of
the real costs. For example, decoding costs also depend
on the number of B-frames present in a video, on the
amount of motion present in the scene, the codec used

and its configuration. Also, operations can be concate-
nated. For example, in order to greyscale a stream in the
decompressed domain, the stream must be first decoded,
then greyscaled, and finally encoded again, as described
in Sect. 3.6. The costs for the combined operation are
Decoding + Greyscaling + Encoding = pixelsrc/s+0.008∗
pixelsrc/s+2 ∗ pixeltarget/s = 3.008 ∗ pixelsrc/s (due to
pixelsrc = pixeltarget).

5.1.2 Example

Assume that the following system configuration is given.
The upper network limit limitnet is set to 5,000,000 bit/s,
the upper CPU limit limitcpu to 30,000,000 pixel/s and the
maximum hard disk speed limithd is 10,000,000 byte/s
(=80,000,000 bit/s). The features of the source stream
are defined as follows:

Fsrc Csrc

dimX = 352 pixel URL=rtsp://t.at/test.url
avgBitRate=200,000 bit/s esID=2
color = 1 aspectRatio = 4/3
frameRate = 25 fps

A client requests a version with the features dimXtarget

= 176 pixels and avgBitRatetarget = 100,000 bit/s. This
requires the proxy/server to decode the stream, re-size
it and encode the result of the re-size operation with the
new bit rate. We assume that the source is read from
the disk and the transcoding result is written both to the
network and to the disk cache.

Disk costs are calculated as reading 200,000 bit/s and
writing back 100,000 bit/s. Thus, the increase of the disk

load hdr generated by the request r is

hdr = avgBitRatesrc + avgBitRatetarget

limithd
= 0.00375

Network costs are limited to sending the generated
video to the requester. The increase of the load netr is

netr = avgBitRatetarget

limitnet
= 0.02

The CPU load consists of the sum of the load of all three
operations involved in creating the target stream. The
load increase cpur due to request r is

cpur = Decoding(fsrc) + Spatial(ftarget) + Encoding(ftarget)

limitcpu

= (352 ∗ 288 ∗ 25.0) + (176 ∗ 144 ∗ 25.0) ∗ 3.72 + (176 ∗ 144 ∗ 25.0) ∗ 2.0
30, 000, 000

= 0.205

5.2 Requirements on a cost function

The cost function should fulfill the following require-
ments: (1) The higher the actual load of a resource, the
more expensive should the usage of that resource be.
(2) It should act also as an admission control tool, i.e.,
requests which would exceed the limit of at least one of
the resources should be rejected. (3) Cache hits should
be preferred over cache misses. (4) It should be pos-
sible to assign weights to resources, according to their
importance. (5) In a commercial scenario, requests from
clients that require transcoding and do not pay enough,
should be rejected. (6) It should try to maximize quality
if enough resources are available.

5.3 Cost formula

The cost formula of QBIX-G distinguishes between sev-
eral different types of costs. Resource costs occur at the
participant that is servicing the request. In commercial
scenarios, QBIX-G must consider content costs where
content owners receive a fee for each request. In a com-
mercial scenario, resource costs should also reflect the
monetary costs that occur at the servicing side for a sin-
gle request.

5.3.1 Resource costs

Let loadnet specify the actual load for the resource net-
work, loadhd for the hard disk, and loadcpu for the pro-
cessor. Each resource has assigned a price, namely
pricenet, pricecpu and pricehd.

Metadata-driven optimal transcoding in a multimedia proxy 61

The first step in calculating costs is to calculate the
additional resource load caused by a request r. As shown
in Sect. 5.1.2, we calculate the additional load for the
resources network (netr), disk (hdr), and CPU (cpur).

Resource costs depend directly on the current load
of the resource and the assigned price. Thus, for a given
request r the formula for overall resource costs is given as

ResourceCosts(r) = netr
1 − futureLoadnet

∗ pricenet

+ cpur

1 − futureLoadcpu
∗ pricecpu

+ hdr

1 − futureLoadhd
∗ pricehd

+ startupDelay
maxDelay

,

or ∞ if futureLoadnet ≥ 1.0

or futureLoadcpu ≥ 1.0

or futureLoadhd ≥ 1.0,

where futureLoadnet = loadnet + netr, futureLoadcpu =
loadcpu + cpur and futureLoadhd = loadhd + hdr. Note
that, by including the actual load of the current
resources, resource intensive operations are penalized
if free resources are already sparse. By having
1 − futureLoad in the denominator, we ensure that the
costs for using a resource will grow exponentially with
increasing load. With a futureLoad of 1, costs will be
infinite. Admission control functionality is achieved by
the additional conditions which return infinite costs if
for at least one resource futureLoad ≥ 1. The inclusion
of the startup delay increases the costs for a cache miss.

5.3.2 Billing costs

Billing costs are only calculated in a commercial scenario
and consist of two parts. They include the resource costs,
the content costs, and a certain profit for the service pro-
vider:

BillingCosts(r) = ResourceCosts(r)

+ ContentCosts(r, quality) + profitr.

Note that in a commercial scenario, billing costs return
the amount of money that a client is charged for con-
suming a video. Thus, the resource costs formula must
return the monetary costs that occur at the servicing
side for a single request. This can be achieved by setting
pricenet, pricehd, and pricecpu accordingly.

If the billing costs exceed the amount of money a cli-
ent is willing to pay, the request is rejected. Note that the
content costs function has to be provided by the content
owner. If no such function exists, the proxy must take

full costs even for a lower quality version of the video.
Profitr is the minimum profit the proxy generates by
servicing a single request.

In a non-commercial scenario, content costs and profit
are zero, thus billing costs are equal to resource costs.

5.4 Quality versus costs

The previous sections have shown how QBIX-G calcu-
lates costs and quality for a single request/stream-ver-
sion pair. Still, a mechanism is needed which combines
the quality measure with the cost value and returns
weighted final costs. FinalCosts are calculated as

FinalCosts(r) = (1 − Quality(r)) ∗ ResourceCosts(r)

or ∞ if Quality(r) = 0

or ResourceCosts(r) = ∞
QBIX-G chooses the stream version with the lowest

final costs and streams it to the client.
The final costs formula meets the requirement that it

spends more resources if the outcome of a transcoding
operation has a high quality, trying to maximize quality.

Another possibility to calculate FinalCosts is sim-
ply: FinalCosts(r) = ResourceCosts(r)

Quality(r) . This formula favors
quality for individual streams as well and has the addi-
tional advantage of returning infinite costs if
Quality(r) = 0. The disadvantage is that quality is over-
emphasized. Some few, expensive (high quality) opera-
tions could monopolize the system resulting in an overall
higher rejection rate and thus impaired service for the
clients. Due to the limited CPU power available in cur-
rent systems, we choose to use the first formula which
allows to service more concurrent requests.

A further requirement is that the cost formula should
only have a minimal impact on the object hit rate of
the proxy. This requirement is fulfilled by obeying the
following stream creation rules.

5.4.1 Stream creation rules

Stream creation rules are used to reduce the number
of possible variations generated in the proxy and to
increase the chance for a future hit. For features, this
means that transcoding is limited to specific discrete
points.

For visual streams we define the following rules:

– Feature dimX must be a multiple of 44 or equal to
the dimension of the source stream. dimY is calcu-
lated according to the aspect ratio of the original
video. This rule generates the most commonly used
resolutions like QCIF (176 × 144), CIF (352 × 288)

62 L. Böszörmenyi et al.

and 4CIF (704 × 576), thus increasing the chance
for a quality hit.

– Average bit rate is defined as dimX ∗ dimY ∗ b bit/s,
b ∈ {1, 2, 4, 8}. The value b stands for the number
of bits used to code a pixel in a compressed stream.
This is a rough (but practical) approximation of the
compression effect, regardless of the frame rate.

– Frame rate should be a multiple of 5 or equal to
the original frame rate, except if the video contains
B-frames, because we never cache a version which
was created by dropping B-frames.6

– Color can be only true or false.

For audio streams the following rules are used:

– The discrete points for the feature samplingRate are
{11025 ∗ i} ⋃{8000 ∗ j}, i ∈ {1, 2, 3, 4}, j ∈ {1, ..., 6}.
Higher sampling rates than 48kHz are deliberately
not supported.

– The feature numOfChannels is limited to mono or
stereo sound only. Creating surround sound in real-
time is considered to be too expensive:
numOfChannels ∈ {1, 2}.

– The feature avgBitRate is defined as: samplingRate∗
numOfChannels ∗ r bit/s, r ∈ {1, 2}.

5.4.2 Version selection algorithm

Let S be the set of elementary streams cached at a proxy,
let V be the set of streams requested by all clients, S ⊆ V.
Also assume that for each stream s ∈ V the content pro-
vider has specified a set of eligible variations V′

s and a
set of available adaptation steps As that can create these
variations.

For a request r, the proxy searches all streams in S that
have the same URL. For each stream version found, the
proxy calculates its quality value. If a version is found
that returns a quality value greater than zero, we have
an object hit with quality hit (no transcoding is neces-
sary). For each quality hit, costs are calculated and both
costs and quality are combined to a final costs value. The
version with the lowest final costs is considered best and
streamed to the client.

In the other case, when no quality hit was found and
transcoding is necessary, one has to generate a set of
possible transcoding sources. For a request r this set is
defined as Sr = {s ∈ S|s.url = r.url ∧ s.cached = true}. If
Sr = {}, an object miss was encountered.

For each stream s ∈ Sr a feature set Fs is defined.
Transcoding is the process of mapping a feature set F to

6 It would be counterproductive to cache a version which can be
generated on the fly so easily.

a feature set F ′. An adaptor a ∈ A, with A being the set
of adaptation steps the proxy supports, performs such a
mapping F → F ′. The definition for a transcoding oper-
ation t thus contains an adaptor and the features of the
source and target streams:

t : F −−−→a F ′

For each feature f ∈ Fs the client specified a fea-
ture range with a minimum, a best, and a maximum
value. For each feature, stream creation rules are known,
which are used to transform a feature range to a set
of discrete target transcoding points P. For example,
for the feature dimX, only multiples of 44 are allowed,
or the original resolution. If a client specified dimX as
[150, 200, 300] and the spatial dimension of the original
stream is outside the specified range, PdimX will result
in the set {176, 220, 264}.

In the visual case, we get sets for dimX (Pdx), bit
rate (Pbr), frame rate (Pfps), and color (Pcol). Thus, the
set of all transcoding possibilities Ts is defined for a
single visual stream s ∈ Sr with the properties Fs =
(dxs, brs, fpss, cols) as

Ts = {(dxs, brs, fpss, cols)
−−−→a (dx, br, fps, c)},

∀ dx ∈ Pdx, ∀ br ∈ Pbr, ∀ fps ∈ Pfps, ∀ c ∈ Pcol,

where a ∈ A′
s and A′

s = A
⋂

As, i.e., a is an adaptor that
is both supported by the proxy (A) and allowed by the
content provider (As).7 If for a mapping from a source
Fs to a target F ′

s (Fs → F ′
s) no suitable adaptor a is found

(or allowed), the mapping is not included in Ts.
This step is repeated for all source files s ∈ Sr which

gives for a single request r the set of all eligible trans-
coding steps:

Tr =
⋃

Ts, ∀s ∈ Sr.

∀t ∈ Tr the final costs are calculated. The transcoding
steps yielding infinite final costs are removed from Tr.

Assuming |Tr| > 0, ∀ t ∈ Tr, the Fs → F ′
s pair with the

minimum final costs is chosen and the video is adapted
with the adaptor a associated with the mapping and
streamed to the client in real-time.

If Tr = {} after this step, either because of object miss
or quality miss, the original video has to be fetched from
the server. The proxy then repeats its calculation with
the original video as the source. If Tr is still empty after
this step, the request is rejected.

7 An adaptor may be defined as a short, predefined sequence of
elementary adaptation steps. Dynamic construction of adaptation
chains is out of scope of this paper.

Metadata-driven optimal transcoding in a multimedia proxy 63

Table 3 User preference
classes DimX Bit rate Color Frame rate

(144,172,200)/0.25 (48000,172999,297999)/0.25 false/0.25 (15.00,15.00,30.00)/0.25
(201,229,257)/0.25 (298000,422999,547999)/0.25 true/0.25 (15.00,20.00,30.00)/0.25
(258,286,314)/0.25 (548000,672999,797999)/0.25 true/0.25 (15.00,25.00,30.00)/0.25
(315,344,374)/0.25 (798000,923000,1048000)/0.25 false/0.25 (15.00,30.00,30.00)/0.25

In a commercial scenario, there is yet another step
prior to adaptation. ∀t ∈ Tr the BillingCostst are calcu-
lated and only adaptation steps where BillingCostst <

moneyr holds, remain in Tr, with moneyr being the max-
imum amount of money the client is willing to pay.

Layered coded streams. The algorithm allows to
handle layered coded streams by treating them as a set of
sources. A stream for which x layers out of n are cached
is treated as if x different versions were cached. CPU
costs are calculated as in the non-layered case. They are
zero if a version matches the request; if not, an adaptor
must be found that decodes, adapts, and encodes the
stream.

6 Evaluation

Before integrating the cost function into the opera-
tional implementation of our proxy [12], experiments
were performed in order to test the idea. We assumed
pricenet = 10, pricecpu = 10, and pricehd = 10 as
“abstract” price values. For the capacities of the disk
and the network, we assumed a disk bandwidth of 10
Mbyte/s and a network bandwidth of 10 Mbit/s. For
CPU speed, we assumed a two-processor system, which
is capable of decoding 75 million pixel/s.

We used WebTraff [5] to generate a list of (nearly)
10,000 requests. For the request pattern we assumed
Zipf distribution with α = 1.0, 0.75, and 0.3. 8 We sim-
ulated 1,000 visual streams each with a dimension of
352 × 288, a frame rate of 30 fps and a constant bit rate
of 912,384 bit/s. All files used the same codec, i.e., syn-
tax conversion did not occur. The total size (thus also
the duration) of the streams followed a Pareto distribu-
tion with the tail index set to 1.2. Streams had a dura-
tion between one and 3,600 seconds; on average, stream
duration was 84 seconds. Request interarrival time was
set to 20 s.

The frame pattern was set to IPBPB... which allowed
a 30 fps stream to be temporally adapted down to 15 fps.
B-frames contributed 20% of the total bit rate. The total
size of all streams was approximately 9 GB, cache sizes

8 Due to space constraints we only present α = 1.0 figures. For
more details see [11].

were set in the range from 1% up to 10% of this total
size, the number of one-timers in the request sequence
was set to 30 and 70%. For cache replacement we used
standard LRU.

We ran several benchmarks with the number of users
requiring transcoding (e.g. for mobile devices) varying
between 0 and 100%, each benchmark was repeated
10 times with different request patterns. Differences
in user requirements were simplified to four different
devices, with the corresponding user preferences shown
in Table 3. Requests with user preferences were pseudo-
randomly distributed over the whole request sequence
with every class being equally important.

We assume that the server does not perform trans-
coding, all transcoding work is done by the proxy. None
of the videos is present in a layered coding format,
thus, transcoding — usually an expensive operation —
is never used just for cache replacement, as suggested in
the literature [7].

6.1 Transcoding rules

In case a quality miss is encountered, the proxy tries to
match the stored media stream versions to the request.
In case of a bit rate miss, it drops B-frames until the spec-
ified bit rate range is reached or no more B-frames are
left. If the resulting bit rate is still too high, transcoding in
the decompressed domain is performed. Results gener-
ated by temporal adaptation in the compressed domain
are never cached, the hit is assigned to the original video.
A spatial miss always requires transcoding. The gen-
erated video is moved to the beginning of the LRU
list, the position of the original video is not changed.
A frame rate miss is dealt with by B-frame dropping
until the specified frame rate range is reached or no
more B-frames are left. If the resulting fps value is still
too high, transcoding in the decompressed domain is
used. Only transcoded versions are inserted into the
cache.

If the proxy cannot create a version that matches
the request (because of an invalid request or due to its
admission control), it rejects the request. Adaptation
costs are calculated as shown in Sect. 5. The proxy first
determines which adaptors are needed and then calcu-
lates the costs that each adaptor causes.

64 L. Böszörmenyi et al.

6.2 Measured parameters

The following parameters are measured during bench-
mark execution:

– Rejected requests: How many requests were
rejected due to unsatisfiable requests, either because
the admission control rejected the request or
because the requested transcoding step is not sup-
ported in the proxy? A rejected request also counts
as an object and byte miss.

– Quality hits: How many requests could be fulfilled
directly from the cache without the need for further
transcoding?

– Object hits: How many requests could be fulfilled
from the cache (including hits that needed adapta-
tion)?

– Byte miss rate: How many of the requested bytes
had to be fetched from the media server when an
object miss was encountered or a request was
rejected? We decided to count a reject as a byte
miss — although no bytes are transferred — to dis-
tinguish between our proxy which detects rejection
caused by quality mismatch in advance and a tradi-
tional proxy which would try to service even absurd
requests such as streaming an HDTV video to a cell
phone.

– Not cached due to locking: How many streams could
not be inserted into the proxy cache because it could
not free up enough space due to file locking?

– Not cached due to size: How many streams were not
inserted due to the stream object exceeding a size
threshold value?

6.3 Experimental setup

We tested with three different proxy configurations:

– Traditional Web proxy: A metadata unaware Web
proxy employing LRU cache replacement. Metada-
ta appended to a request is ignored.

– Traditional intelligent proxy: A metadata aware tra-
ditional Web proxy which is not capable of adap-
tation but the proxy is at least “smart” enough to
detect and parse the metadata and to reject requests
which would require transcoding.

– QBIX-G media gateway: Our adaptive media gate-
way which uses our cost formula and can perform
adaptation in the decompressed domain.

These configurations were — where meaningful —
benchmarked with different numbers of adaptation

request:

– No adaptation scenario: This is the reference sce-
nario where no client requires adaptation.

– 25% adaptation scenario: Every fourth request
enforces transcoding in the decompressed domain.

– 100% adaptation scenario: All requests enforce
transcoding in the decompressed domain.

Note that in the No Adaptation Scenario all config-
urations yield identical results because in this case our
QBIX-G media gateway works simply as a traditional
proxy. Thus we only present the results of the Tradi-
tional Web Proxy configuration, in the figures denoted
by Traditional Proxy, No Adaptation Requests.

The Traditional Intelligent Proxy configuration was
measured additionally in the 25% Adaptation Scenario
(see the Traditional Intelligent Proxy, 25% Adaptation
Requests graph). The 100% Adaptation Scenario was not
meaningful with this configuration, since it would have
resulted in 100% rejection rate.

The QBIX-G Media Gateway was benchmarked with
0, 25 and 100% adaptation requests, the no-adaptation
scenario giving the same results as the traditional proxy.
The 25% scenario is named Media Gateway, 25% Adap-
tation Scenario, the 100% scenario is called Media Gate-
way, 100% Adaptation Scenario.

Furthermore, we repeated some benchmarks with an
object size limit for individual video objects which was
set to 25% of the proxy disk cache size.

6.4 Results

The following results were found during the evalua-
tion: (1) Adaptation is always better than rejection.
(2) If the number of client requests demanding adap-
tation increases, the general cache characteristics (such
as object hit rate, quality hit rate, and byte miss rate) are
getting worse. (3) In the case of request rejections, an
adaptive proxy avoids sending unusable data over the
network. (4) Locking is a major problem for a media
gateway, often leading to a situation where streams can-
not be cached because not enough disk space could be
freed (see Sect. 6.4.3 for a short discussion). (5) Intro-
ducing the object size limit is advantageous for both the
media gateway and the traditional proxy. It improves
quality and object hit rate and degrades byte miss rate.
(6) Current hardware is fast enough to perform real-
time adaptation in the decompressed domain for small
proxy systems.

The following sections will provide more details on
each of the findings.

Metadata-driven optimal transcoding in a multimedia proxy 65

6.4.1 Adaptation versus Rejection

It is an obvious conclusion that adaptation is always
better than rejection, yet it is a conclusion worth quan-
tifying. For example, Fig. 7a shows the gain in object hit
rate we can achieve by supporting media gateway func-
tionality. The cases where requests for adaptation are
simply ignored lead to an object hit rate as shown in the
traditional intelligent proxy graph in Fig. 7a. In general,
the higher the Zipf α value (meaning more skewed pop-
ularity), the more substantial is the gain in hit rate; with
α = 1.0 the difference is up to 10%.

6.4.2 Impact of number of adaptation requests

Figure 7b shows how the object hit rate evolves with
an increasing number of adaptation requests. Gener-
ally, the hit rate decreases with an increasing number

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

O
bj

ec
t H

it
R

at
e

(%
)

Size of Cache / Total Videos Size(%)

Object Hit Rate (Zipf Value=1.00, One Timers=0.30, Requests=10K)

Traditional Intelligent Proxy, 25.0% Adaptation Requests
Media Gateway, 25.0% Adaptation Requests

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

O
bj

ec
t H

it
R

at
e

(%
)

Size of Cache / Total Videos Size(%)

Object Hit Rate (Zipf Value=1.00, One Timers=0.30, Requests=10K)

Traditional Proxy, No Adaptation Requests
Media Gateway, 100.0% Adaptation Requests
Media Gateway, 25.0% Adaptation Requests

(a) Adaptation vs. Rejection Zipf a = 1.0

(b) Effect of Adaptation Zipf a = 1.0

Fig. 7 Object hit rate

 70

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8 9 10

B
yt

e
M

is
s

R
at

e
(%

)

Size of Cache / Total Videos Size(%)

Byte Miss Rate (Zipf Value=1.00, One Timers=0.30, Requests=10K)

Traditional Proxy, No Adaptation Requests
Media Gateway, 100.0% Adaptation Requests
Media Gateway, 25.0% Adaptation Requests

(a) Byte Miss Rate Zipf a = 1.0

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

Q
ua

lit
y

H
it

R
at

e
(%

)

Size of Cache / Total Videos Size(%)

Quality Hit Rate (Zipf Value=1.00, One Timers=0.30, Requests=10K)

Traditional Proxy, No Adaptation Requests
Media Gateway, 100.0% Adaptation Requests
Media Gateway, 25.0% Adaptation Requests

(b) Quality Hit Rate Zipf a = 1.0

Fig. 8 Effect of adaptation (1)

of adaptation requests. Analogous observations can be
made for byte miss rate (Fig. 8a) and quality hit rate
(Fig. 8b).

The reason for this behavior lies in our assumption
that no stream is available in a layered coding format,
thus the sum of the sizes of all transcoded versions of a
stream is larger than the size of a single layered coded
version of the same stream. As soon as the cache size is
less restricted, the media gateway can close the gap to
the traditional proxy. The byte miss rate in Fig. 8a with
a large cache size of 10% of the total size of all videos is
a good example for that.

Another reason is that if there is enough disk space
in the proxy cache, we also store the original versions
of the stream. By making two insertions into the proxy
cache for an object miss, we evict more streams from
the cache for a single request than a traditional proxy
(which only stores the original version). For a sequence
of 10,000 requests, where all requests require transcod-
ing, the number of insertions is as high as 16,200 for the

66 L. Böszörmenyi et al.

Zipf parameter α = 0.3 case (cache size 10%). With
α = 1.0 this value is reduced to less than 10,800 due to a
higher object and quality hit rate.

Quality hit rate is defined as how many requests can
be reused directly from the cache without requiring
transcoding. Thus, the higher the number of adaptation
requests, the lower is the quality hit rate. The parameter
tells us how much transcoding work was saved by cach-
ing transcoded versions. Quality hit rate is very sensitive
to the Zipf α value. The higher this value, the better is
the achieved hit rate.

6.4.3 The problem of locking

Generally, locking in a video cache is worse than in a
standard Web proxy cache. As in every cache, objects
must be locked on the file level and excluded from cache
replacement as long as they are in use by a client. While
this amount of time is very short for small Web docu-
ments, it depends in the case of videos directly on the
duration of the video streams. For example, consider
the case where a client requests a two hour video. The
video may be locked even for the whole play-out time,
i.e., two hours. (The lock time can be less, however, if
partial caching in the time domain is used.) Thus, large
files can remain in the cache for a very long time, even if
they are only one-timers. The situation gets worse with
adaptive video proxies that support transcoding in the
decompressed domain. Now, not only the original source
video is locked in the cache but also the generated trans-
coded version. In the worst case, this means that for a
single request, a zero-timer (the original video) and a
one-timer (the transcoded version) block the cache for
other (popular) objects.

As shown in Fig. 9a, 16–37% of all video insertions
fail due to locking when all clients request adaptation,
whereas in the non-transcoding scenarios this value is
clearly lower. Interestingly, locking seems to be worse
with highly skewed request patterns. The reason
is that some large source streams remain in the cache
for a very long time, e.g., consider a popular 100 s video
being used as transcoding source. With α = 1.0 it is
very likely that during the time the original video is
locked, another request will need the same video for
a different transcoding step and extend the lock time
for the original video. Thus, a constant (large) amount
of the proxy cache is always locked, with the other
less popular requests competing for the reduced
space. Also, a growing cache size allows the proxy to
cache larger videos that remain locked longer than short
videos, leading to the “bumps” in the graphs in
Fig. 9a.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10

N
ot

 C
ac

he
d

D
ue

 T
o

Lo
ck

in
g

(%
)

Size of Cache / Total Videos Size(%)

Not Cached Due To Locking (Zipf Value=1.00, One Timers=0.30, Requests=10K)

Traditional Proxy, No Adaptation Requests
Media Gateway, 100.0% Adaptation Requests
Media Gateway, 25.0% Adaptation Requests

(a) Not Cached Due To Locking Zipf a = 1.0

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

R
ej

ec
te

d
R

eq
ue

st
s

(%
)

Size of Cache / Total Videos Size(%)

Rejected Requests (Zipf Value=1.00, One Timers=0.30, Requests=10K)

Traditional Proxy, No Adaptation Requests
Media Gateway, 100.0% Adaptation Requests
Media Gateway, 25.0% Adaptation Requests

(b) Request Rejection Rate Zipf a = 1.0

Fig. 9 Effect of adaptation (2)

6.4.4 Improved request rejection rate

Figure 9b shows the percentage of requests being
rejected by the admission control function. The tradi-
tional proxy rejects around 20% of all requests due to
insufficient network bandwidth.

With increasing number of transcoding requests,
request rejection decreases to approximately 10%. This
is due to two reasons. First, the CPU of the bench-
marked system is fast enough to cope with all trans-
coding requests, so if a request is rejected it is always
due to insufficient network bandwidth. Second, 75% of
low-end (mobile) clients require a bit rate lower than the
original bit rate, which reduces the load on the resource
network.

6.4.5 Effect of object size limit

For most measured parameters, the object size limit
shows the same effect on both adaptation and non-
adaptation scenarios, e.g. quality and object hit rates
improve, byte miss rate decreases in both scenarios.

Metadata-driven optimal transcoding in a multimedia proxy 67

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10

N
ot

 C
ac

he
d

D
ue

 T
o

Lo
ck

in
g

(%
)

Size of Cache / Total Videos Size(%)

Not Cached Due To Locking (Zipf Value=1.00, One Timers=0.30, Requests=10K)

Traditional Proxy, No Adaptation Requests
Traditional Proxy, 25% Object Size Limit

Media Gateway, 100.0% Adaptation Requests, 25% Object Size Limit
Media Gateway, 100.0% Adaptation Requests

(a) Not Cached Due To Locking Zipf a = 1.0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9 10

N
ot

 C
ac

he
d

D
ue

 to
 S

iz
e

Li
m

ita
tio

n
(%

)

Size of Cache / Total Videos Size(%)

Not Cached Due to Size Limitation (Zipf Value=1.00, One Timers=0.30, Requests=10K)

Traditional Proxy, No Adaptation Requests
Traditional Proxy, 25% Object Size Limit

Media Gateway, 100.0% Adaptation Requests, 25% Object Size Limit
Media Gateway, 100.0% Adaptation Requests

(b) Not Cached Due To Size Zipf a = 1.0

Fig. 10 Effect of object size limit

Introducing an object size limit of 25% of the overall
proxy cache size, significantly reduces the locking prob-
lem in both scenarios (Fig. 10a). In the traditional proxy
the locking problem no longer exists, in the media gate-
way it reaches 1% at most. Due to the size limit and
the higher bit rate of original video versions, these are
more likely to exceed the size limit and are not cached.
Thus, the size limit favors smaller objects, i.e., transcod-
ed versions, with a bit rate lower than the original one.
This allows the media gateway to store more objects,
which improves quality and object hit rates. Figure 10b
shows this behavior. The traditional proxy always has
a higher request rejection rate than the media gateway.
When only original video objects are requested, the tra-
ditional proxy rejects, for a medium cache size (5%),
approx. 20% of all insertions because of their size, while
the media gateway only rejects about 13%. Compared to
the scenarios where no object size limit is set, these val-
ues are still high, though, which explains why byte miss
rate is negatively affected. Generally speaking, intro-
ducing the object size limit improves object and quality
hit rates at the price of worsening byte miss rate.

7 Conclusion and future work

We have presented a multimedia proxy gateway that
makes a first step towards offering What You Need is
What You Get (WYNIWYG) services. By combining
user preferences, resource usage, and quality into one
cost formula, we are able to determine which media
stream version will give the client good enough quality
with acceptable costs at the proxy. We have shown the
effects of transcoding in the decompressed domain on
the byte, object, and quality hit rates, and that locking is
a major problem if the number of adaptation requests
is high and one is forced to rely solely on transcoding.
As long as the devices requiring adaptation remain a
minority, transcoding is a feasible processing step in a
media gateway proxy and a useful complement to lay-
ered coding support. The minor loss of object hit rate
is compensated by the functionality gained and will be
further reduced when efficient layered coding is avail-
able.

Further work is to be done, in order to extend the sim-
ulations to include layered coding and to implement the
support for cost function and user preferences into our
open-source QBIX-ViTooKi implementation. A combi-
nation of different partial caching schemes and domains,
such as quality and time, promises further improvements
and should be investigated.

Acknowledgements This project was funded in part by FWF
(Fonds zur Förderung der wissenschaftlichen Forschung) P14788
and by KWF (Kärntner Wirtschaftsförderungsfonds).

References

1. Bormans, J., Hill, K.: N5231 — MPEG-21 Over-
view v.5. http://www.chiariglione.org/mpeg/standards/mpeg-
21/mpeg-21.htm (2002)

2. DeMartini, T., Wang, X., Wragg, B.: N5599 — Study of
Text of ISO/IEC FCD 21000-5 Rights Expression Lan-
guage. http://xml.coverpages.org/MPEG21-W5599-StudyOf-
REL-FCD-200303.pdf (2003)

3. Fahmi, H., Latif, M., Sedigh-Ali, S., Ghafoor, A., Liu, P.,
Hsu, L.H: Proxy servers for scalable interactive video sup-
port. IEEE Comput. 43(9), 54–60 (2001)

4. Kangasharju, J., Hartanto, F., Reisslein, M., Ross, K.W.: Dis-
tributing layered encoded video through caches. In: Proceed-
ings of IEEE INFOCOM, pp. 622–636 (2001)

5. Markatchev, N., Williamson, C.: WebTraff: A GUI for web
proxy cache workload modeling and analysis. In: IEEE Inter-
national Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunications Systems, vol. 10,
pp. 356–363 (2002)

6. Paknikar, S., Kankanhalli, M., Ramakrishnan, K.R.,
Srinivasan, S.H., Ngoh, L.H.: A caching and streaming frame-
work for multimedia. In: Proceedings of ACM Multimedia,
pp. 13–20 (2000)

68 L. Böszörmenyi et al.

7. Podlipnig, S., Böszörmenyi, L.: Replacement strategies for
quality based video caching. In: IEEE International Con-
ference on Multimedia and Expo (ICME), vol. 2, pp. 49–52
(2002)

8. Rejaie, R., Kangasharju, J.: Mocha: A quality adaptive mul-
timedia proxy cache for internet streaming. In: 11th Interna-
tional Workshop on Network and Operating Systems Support
for Digital Audio and Video, pp. 3–10 (2001)

9. Reynolds, F., Hjelm, J., Dawkins, S., Singhal, S.: Composite
capabilities/preference profiles (CC/PP): a user side frame-
work for content negotiation. W3C Note 27 July 1999,
http://www.w3.org/TR/NOTE-CCPP [2004-06-04] (1999)

10. Sasabe, M., Wakamiya, N., Murata, M., Miyahara, H.: Proxy
caching mechanisms with video quality adjustment. In: Pro-
ceedings of the SPIE Conference on Internet Multimedia
Management Systems, pp. 276–284 (2001)

11. Schojer, P.: QBIX-G: A quality based intelligent proXy gate-
way. PhD Thesis, Klagenfurt University (2005)

12. Schojer, P., Böszörmenyi, L., Hellwagner, H., Penz, B.,
Podlipnig, S.: Architecture of a quality based intelligent proxy
(QBIX) for MPEG-4 Videos. In: ACM World Wide Web Con-
ference, pp. 394–402 (2003)

13. Sen, S., Rexford, J., Towsley, D.: Proxy Prefix Caching for
Multimedia Streams. In: Proceedings of IEEE INFO-
COM’99, pp. 1310–1319 (1999)

14. Vetro, A., Timmerer, C.: N5845 - Text of ISO/IEC 21000-
7 FCD - Part 7: Digital Item Adaptation. http://www.
chiariglione.org/mpeg/working_documents/mpeg-21/
dia/dia_fcd.zip (2003)

15. Wang, C.N., et al: M8887 — FGS-based video streaming test
bed for MPEG-21 universal multimedia access with digital
item adaptation. ISO/IEC Input Document (2002)

16. Zhang, Z.L., Wang, Y., Du, D.H.C., Shu, D: Video staging:
a proxy-server-based approach to end-to-end video delivery
over wide-area networks. IEEE/ACM Trans. Netw. 8(4), 429–
442 (2000)

	Metadata-driven optimal transcoding in a multimedia proxy
	Abstract
	Introduction
	Basic notions
	Client-side proxy cache
	Media gateway
	Media adaptation
	Adaptation and cache replacement
	Adaptation and codecs
	Adaptation and media gateways
	User preferences
	QBIX-G
	Media caching and access scenarios
	QBIX-G architecture
	Frame manipulation
	Metadata support
	RTSP
	Extension to DESCRIBE
	Stream processing
	Transcoding costs
	Calculating stream quality
	Stream features
	Request definition
	Quality formula
	Feature quality function
	Overall quality function
	Calculating stream costs
	Resource definition and costs
	CPU costs
	Example
	Requirements on a cost function
	Cost formula
	Resource costs
	Billing costs
	Quality versus costs
	Stream creation rules
	Version selection algorithm
	Evaluation
	Transcoding rules
	Measured parameters
	Experimental setup
	Results
	Adaptation versus Rejection
	Impact of number of adaptation requests
	The problem of locking
	Improved request rejection rate
	Effect of object size limit
	Conclusion and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

